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Abstract 

Introduction. Constrained principal component analysis for fMRI (fMRI-CPCA) is carried out in 

two main steps: (1) blood-oxygen-level dependent (BOLD) signal is row (time)-constrained to 

variance predictable from a finite impulse response (FIR) model, and (2) task-based networks 

and their associated estimated hemodynamic response shapes (HDR) are extracted through 

dimension reduction. In the current study, we introduce a novel methodology that additionally 

employs anatomical patterns as constraints on columns (voxels).  We refer to this as 

spatiotemporal fMRI-CPCA (ST-fMRI-CPCA). 

Methods. In a series of analyses, we tested whether ST-fMRI-CPCA accurately portions the 

row (time)-constrained variance into that which is predictable (and not) from network-level 

constraints on columns (voxels). This was achieved by (1) preserving the networks retrieved 

from a traditional row-constrained fMRI-CPCA, and (2) systematically including or excluding 

these networks from column constraints to test whether they are retrievable in the portions of 

row (time)-constrained variance that are predictable (or not) from the column constraints. 

Retrieval of a network was determined anatomically through spatial correlation, and temporally 

through analysis of HDR shapes.  

Results. Our analyses validate ST-fMRI-CPCA as a method that can separately retrieve task-

based brain networks, and their associated HDRs, from spatial-model-predictable and spatial-

model-unpredictable aspects of task timing-related fluctuations in BOLD signal.  

Conclusion. ST-fMRI-CPCA is an accurate tool for evaluating network models as predictors of 

BOLD signal changes induced by task-based fMRI and could be employed to compare spatial 

models (e.g., parcellations or competing network sets) on their ability to account for the task-

timing-related brain networks measurable by fMRI.  
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Impact Statement:  

ST-fMRI-CPCA is a novel tool for combining temporal and spatial constraints to retrieve 

brain networks from task-based fMRI data. It can be used to compare spatial models by 

exploring the degree to which competing spatial models can capture task timing-predictable 

variance in BOLD signal. Applications include comparison of parcellation schemes, or network 

sets, for explaining task-based fMRI data. 
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Combining temporal and spatial constraints in task-based fMRI 

 

Constrained Principal Component Analysis for fMRI (fMRI-CPCA) has emerged as a 

reliable data-driven method for extraction of task-based brain networks from fMRI data, 

including their associated hemodynamic response shapes, which are interpreted to determine 

cognitive functions (e.g., Damascelli et al., 2021; Larivière et al., 2017; Lavigne, Menon, Moritz, 

& Woodward, 2020; Lavigne, Metzak, & Woodward, 2015; Metzak et al., 2011; Metzak et al., 

2012; Roes, Chinchani, & Woodward, 2021; Sanford, Whitman, & Woodward, 2020; Whitman, 

Metzak, Lavigne, & Woodward, 2013; Wong et al., 2020; Woodward et al., 2006; Woodward et 

al., 2015). In its standard application, prior to dimension reduction, variability in blood oxygen 

level dependent (BOLD) signal is constrained to that portion which is predictable from task 

timing for the specific task under study. Importantly, fMRI-CPCA uses a finite impulse response 

(FIR) model (Lindquist, Meng Loh, Atlas, & Wager, 2009) which does not make a priori 

assumptions that networks exhibit a canonical HDR shape, but instead estimates the HDR 

shape from the data. This practice acknowledges that the shape of the HDR may be task-, 

condition, and subject-specific; observation of HDR timing, and responses to tasks and task 

conditions, is the primary way to identify the cognitive process(es) supported by each functional 

network. Spatial characteristics of the networks, in the form of component loadings overlaid onto 

a brain image to visualize the voxels most strongly contributing to each functional network, 

provide a supporting basis for the cognitive process(es) derived from the HDRs. Because this 

form of fMRI-CPCA is spatially exploratory, with no anatomical models or parcellation schemes, 

we refer to it as the “data-driven” fMRI-CPCA method.  

CPCA as a general statistical technique provides a highly flexible framework for 

examining the structure of multivariate data as it relates to auxiliary information about the rows 

and/or columns of a data matrix (Takane & Shibayama, 1991), and although row-wise 
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constraints (timing) and column-wise (spatial) constraints have separately been exploited, the 

simultaneous application of both kinds of constraints  is also possible for fMRI data analysis 

(Takane & Shibayama, 1991). Task timing constraints (a row-wise constraint only), are the basis 

of the ‘data-driven’ fMRI-CPCA model, whereas spatial/voxel constraints (a column-wise 

constraint- e.g., regions or network models of interest) have separately used to translate fMRI 

networks into the domain of MEG, for example (Metzak, 2017; Whitman et al., 2016).  In the 

context of task-based fMRI data analysis with CPCA, combining row and column constraints 

would enable BOLD signal variance to be partitioned into four orthogonal partitions: that which 

is predictable from task timing in conjunction with a spatial model of interest (SMoI), that which 

is predictable from task timing but orthogonal to the SMoI, that which is predictable from the 

SMoI but orthogonal to task timing, and that orthogonal to both task timing and the SMOI (i.e., 

error). Dimension reduction can be applied to any or all of these orthogonal sources of variance. 

Those partitions of variance involving the combination of row and column constraints (i.e., those 

predictable from task timing and SMoIs simultaneously) provide the basis for evaluating spatial 

models as predictors of the BOLD signal changes induced by task-based fMRI. 

fMRI-CPCA with combined temporal and spatial constraints would enable, for example, 

comparison of resting-state to task-based functional networks (e.g, Bzdok et al., 2016; Yeo et 

al., 2015), various parcellation methods (Bellec, Rosa-Neto, Lyttelton, Benali, & Evans, 2010; 

Glasser et al., 2016; Gordon et al., 2016; Schaefer et al., 2018; Yeo et al., 2011), or overlapping 

task-based network models (e.g., Fedorenko, Duncan, & Kanwisher, 2013; Percival, Zahid, & 

Woodward, 2020; Yarkoni, Poldrack, Nichols, Van Essen, & Wager, 2011) as predictors of the 

dominant dimensions of BOLD signal related to task timing.  Additionally, such a method may 

reduce the need to classify retrieved networks in the absence of SMoIs, by directly providing the 

weightings of networks retrieved as one of the outputs when combining row with column 

constraints.  
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The objective of the present study is to confirm the ability of simultaneous timing (row) 

and spatial (column) constraints to retrieve brain networks that are known to be involved in task-

based fMRI, because they were previously retrieved by the standard row-constrained fMRI-

CPCA. This application of fMRI-CPCA is referred to as spatiotemporal fMRI-CPCA (ST-fMRI-

CPCA). Here, we introduce the technical details regarding the ST-fMRI-CPCA methodology and 

present a series of analyses that validate this approach and demonstrate the metrics by which 

spatial models can be evaluated as predictors of the network-level BOLD signal changes 

induced by task-based fMRI. We discuss the implications and applications of this approach for 

task-based fMRI data analysis. 

Methods 

Constrained Principal Component Analysis (CPCA) is a general technique that combines 

regression analysis and principal component analysis into a unified framework (Takane & 

Shibayama, 1991), revealing dimensions of the data that are optimally predicted by external 

information about the rows and/or columns of the data. Generally speaking, CPCA is carried out 

in two steps: 1) External information about the rows (full brain scans or TRs in the case of fMRI-

CPCA) and/or columns (voxels in the case of fMRI-CPCA) of the data matrix are used as 

predictors in column-wise and/or row-wise multivariate multiple regressions. The resulting 

regression model partitions the total variability in the dataset into that which can be predicted 

from row and/or column predictor variables, and that which cannot (referred to as matrices of 

error scores in the tradition of multiple regression). 2) Next, PCA is performed on the resulting 

constrained matrices (referred to as matrices of predicted scores in the tradition of multiple 

regression) to determine patterns of inter-correlations within the data related to row and/or 

column predictor variable matrices. For an introduction to the theory and the diverse 

applications of CPCA, see Takane & Shibiyama (1991), Takane & Hunter (2001), and Hunter & 

Takane (2002). In the context of fMRI data analysis, the data matrix consists of the full array of 

task-fMRI data, as is described below.  
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Data matrix (Z) of Dependent Variables 

The 2-dimensional data matrix, 𝑍, contains the full time series of fMRI scans for all 

subjects (𝑛 × 𝑠 rows) for all voxels of interest in the brain (𝑚 columns), where 𝑛 is the number of 

subjects, s is the number of full-brain scans in the time series, and 𝑚 is the number of voxels 

after masking out non-brain areas, realigned, smoothed, and spatially normalized, mean-

centered and standardized to a variance of 1.0 prior to further analysis. The construction of the 

𝑍 matrix in this fashion, with time-series information about the BOLD signal in the rows, and 

spatial/voxel information in the columns, allows the use of task-timing (row) and/or spatial 

(column) constraints to examine specific portions of BOLD variance related to task-timing and/or 

models of interest.  

Row-wise Independent Variables (G) 

The design matrix 𝐺 contains the timing information for the fMRI experiment, where each 

row of 𝐺 corresponds to a whole-brain scan in the data matrix 𝑍. 𝐺 contains a FIR model 

specifying the post-stimulus time points for which changes in BOLD signal relative to all other 

scans are to be estimated in a data-driven fashion (Henson, Rugg, & Friston, 2001; Serences, 

2004). The columns in the subject- and condition-based 𝐺 matrix encode the 𝑡 peristimulus time 

points for each experimental condition, for each subject, totaling 𝑛 × 𝑘 × 𝑡 columns in 𝐺, where 𝑛 

is the number of subjects and 𝑘 is the number of conditions. The value 1 is placed in the rows of 

𝐺 for which BOLD signal amplitude is to be estimated, and 0’s are placed in all other rows. 

In a spatially ‘data-driven’ fMRI-CPCA analysis, BOLD signal is constrained solely by 

task timing information represented in the 𝐺 matrix, as detailed previously elsewhere (Metzak et 

al., 2011; Metzak et al., 2012) and in the Supplementary material. Briefly, in a data-driven fMRI-

CPCA analysis, 𝑍 is regressed onto the task timing/design matrix (𝐺) to produce the 𝐺𝐶 matrix 

containing the BOLD signal predictable from the timing of stimulus presentations, and 𝐸 (error), 

 𝑍 = 𝐺𝐶 + 𝐸.  (1) 
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Following this, the dominant dimensions of task timing-related variance (𝐺𝐶) are characterized 

through PCA. 

Column-wise Independent Variables (H) 

The novelty and usefulness of ST-fMRI-CPCA is that it further partitions task-timing 

predictable variance (𝐺𝐶) into SMoI -predicted and -unpredicted sources of task-timing related 

variance. In ST-fMRI-CPCA, the 𝐻 matrix specifies the SMoI that will be used to constrain 

variance in measured BOLD signal over columns. The 𝐻 matrix has 𝑚 rows, each one 

corresponding to a voxel represented in the analysis (i.e., a column of 𝑍). Column-wise 

constraints optimize results to those predictable from the voxel-wise information, such as brain 

network patterns, parcellation schemes, or hypothesized spatial contrasts. For example, using 

an SMoI in 𝐻, one could constrain results to a contrast of hemispheres, or probe the degree to 

which hypothesized voxel-wise brain network patterns account for variance in BOLD signal; see 

Figure 2 for an illustration of 𝐻 matrix creation. 

Spatiotemporal fMRI-CPCA Step 1: Multivariate multiple regression 

The full form of the CPCA model is as follows: 

 𝑍 = 𝐺𝑀𝐻! + 𝐺𝐶"#$% + 𝐵"#$&𝐻! + 𝐸, (2) 

where 𝑍, 𝐺, and 𝐻 are the BOLD signal data matrix, temporal model, and SMoI matrices 

previously described, respectively. In the multivariate multiple regression step of ST-fMRI-

CPCA, 𝐺 and 𝐻 are used as row-wise and column-wise independent variables, respectively. 

This allows fMRI BOLD signal variance to be partitioned into the portion predictable from task 

timing in conjunction with the SMoI (𝐺𝑀𝐻!), predictable from task timing independent of the 

SMoI (𝐺𝐶"#$%), the portion the portion predictable from the SMoI but not from task timing 

(𝐵"#$&𝐻′), and error (𝐸). Thus, it provides a basis upon which to explore the performance of 

different network models in predicting task-timing-dependent brain activity.  
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In the above equation, 𝐺𝑀𝐻! represents the portion of 𝑍 that can be explained by the 

combination of both 𝐺 and 𝐻. Relative to the 𝐺𝐶 matrix from a ‘data-driven’ fMRI-CPCA, which 

is already constrained by the temporal model, 𝐺𝑀𝐻! represents the subset of BOLD signal that 

is also predicted by the SMoI. The matrix of regression coefficients, 𝑀, is estimated as follows: 

 𝑍 = 𝐺𝑀𝐻! + 𝐺𝐶"#$% + 𝐵"#$&𝐻! + 𝐸, (3) 

𝐺𝐶"#$% represents the portion of 𝑍	that can be explained by 𝐺 independent of 	𝐻. In ST-fMRI-

CPCA, it represents task-timing-predictable BOLD signal variance that is not explained by the 

SMoI. The parameter 𝐶"#$% contains regression weights for each scan timepoint, and is 

estimated by regressing 𝑍 onto that part of 𝐺 that is independent of 𝐻, as follows: 

 𝐶"#$% = (𝐺′𝐺)'( × 𝐺!𝑍 × [𝐼) −𝐻 × (𝐻′𝐻)'( × 𝐻!], (4) 

where 𝐼) is an identity matrix sized on the columns of 𝑍	(voxels) that contains ones on the main 

diagonal and zeros elsewhere. 

Because our focus here is on task-timing related activity, details regarding the 

computation and characterization of task timing-unpredicted portions of variance (𝐵"#$&𝐻!	 and 

residual variance, 𝐸) will not be discussed here, but have been explained in more detail in the 

Supplementary Material. 

1.1.1 Spatiotemporal fMRI-CPCA Step 2: Principal Component Analyses.  

PCA can be applied separately to each of the matrices resulting from the multivariate 

regression step (viz., 𝐺𝑀𝐻, 𝐺𝐶"#$%, 𝐵"#$&𝐻′, and 𝐸) in order to examine the structure of specific 

portions of BOLD signal variance that are of interest, which are orthogonal, so can be 

interpreted independently. In the application described here, the task-timing-predictable 

variances in BOLD signal that can (i.e., 𝐺𝑀𝐻!) or cannot (i.e., 𝐺𝐶"#$%) be explained by a 

specified SMoI 𝐻 are of primary interest. 

The matrix 𝐺𝑀𝐻! (activations predicted by task timing in conjunction with the SMoI) is 

decomposed using singular value decomposition (SVD) as follows: 
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 𝑈𝐷𝑉! = 𝐺𝑀𝐻′. (5) 

The left singular values of 𝐺𝑀𝐻′ correspond to time-series information about the 

components, and the right singular vector 𝑉 contains spatial information about the components. 

Because 𝐺𝑀𝐻′ is predictable from both task-timing (row) and spatial (column) information, we 

can compute predictor weights describing the contribution of both the SMoI (𝑃%) and task-timing 

information (𝑃&) to each spatiotemporal component. 𝑃%  predictor weights are the unstandardized 

beta coefficients produced by regressing the right singular vector 𝑉 of 𝑈𝐷𝑉′=	𝐺𝑀𝐻! onto 𝐻;  

 𝑃% = (𝐻′𝐻)'( × 𝐻!𝑉.  (6) 

The 𝑃% weights computed using the above equation specify how the columns of 𝐻 linearly 

recombine to produce the 𝐺𝑀𝐻′  component images. Therefore, where a network from a SMoI 

perfectly corresponds to a 𝐺𝑀𝐻′ component image, that network will have a predictor weight of 

magnitude 1, and all other networks included in the model will have a predictor weight of 0. 

𝑃&  predictor weights provide subject- and condition-specific HDR estimates for each 

𝐺𝑀𝐻! component, and are the unstandardized beta coefficients produced by regressing the left 

singular vector 𝑈 of 𝑈𝐷𝑉′=	𝐺𝑀𝐻! onto 𝐻; 

 𝑃& = (𝐺′𝐺)'( × 𝐺!𝑈.  (7) 

The matrix 𝐺𝐶"#$% can also be characterized to examine the task-related variance in 

BOLD signal that is not captured by a SMoI. 𝐺𝐶"#$% is decomposed through SVD: 

 𝑈𝐷𝑉′ = 𝐺𝐶"#$%. (8) 

Interpretation of 𝐺𝐶"#$% components proceeds in much the same way as in a data-driven 

fMRI-CPCA. 𝑃&"#$% predictor weights provide subject- and condition-specific HDR estimates for 

each 𝐺𝐶"#$%.component, and are computed as the unstandardized beta coefficients produced 

by regressing the left singular vector 𝑈 of 𝑈𝐷𝑉′=𝐺𝐶"#$% onto 𝐻. Component loadings provide 

spatial information about each 𝐺𝐶"#$%.component. Conceptually, 𝐺𝐶"#$% components describe 

spatiotemporal aspects of task-related networks that are not accounted for by the SMoI. 
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Spatiotemporal fMRI-CPCA test case selection 

The mathematical proof for CPCA with combined column-wise and row-wise constraints 

has been published previously as a general methodology (Takane & Shibayama, 1991); 

however, the current study is the first to implement this model for the purpose of fMRI data 

analysis. Therefore, our aim was to test whether ST-fMRI-CPCA accurately portions the row 

(time)-constrained variance into that which is predicted (and not) by the network-level 

constraints on columns (voxels). Our second objective is to demonstrate the metrics by which 

network model performance can be evaluated using this method. 

We first identified ‘test cases’ for which the expected outcomes were known, based on 

the relations between 𝐺𝐶, 𝐺𝑀𝐻!  and 𝐺𝐶"#$%, as illustrated in Figure 1. Namely, in a ST-fMRI-

CPCA, all task-timing related variance (i.e., the 𝐺𝐶 variance in a spatially “data-driven” fMRI-

CPCA with timing constraints only) is further subdivided into spatial-model-predicted	(𝐺𝑀𝐻!) 

and spatial-model-unpredicted (𝐺𝐶"#$%) task timing-related variance; that is, 

𝐺𝐶	 = 	𝐺𝑀𝐻!	 + 	𝐺𝐶"#$%. It logically follows that where a SMoI H perfectly predicts all task-timing 

related variance, then 𝐺𝐶	 = 	𝐺𝑀𝐻!	, and 𝐺𝐶"#$% = 0 . Where a SMoI (i.e., linear recombination 

of the networks specified in 𝐻) fails to predict task timing-related variance, the residual variance 

instead should be retrievable in 𝐺𝐶"#$%, the portion of variance that is related to timing 

constraints, but is SMoI -independent. 

We can make use of the relationships illustrated in Figure 1 to engineer test cases for 

which the expected structure of 𝐺𝑀𝐻! and 𝐺𝐶"#$% have already been derived from “data-driven” 

𝐺𝐶 component loadings, which are by definition redundant with timing constraints. Any data-

driven networks (i.e., whole-brain images of the original 𝐺𝐶 components) that are included in the 

SMoI 𝐻 should be retrieved in 𝐺𝑀𝐻!; any data-driven networks that are excluded from the 

SMoI 𝐻 will be retrieved from 𝐺𝐶"#$%. In these scenarios, the spatiotemporal features and 

variance explained by the data-driven networks should be exactly replicated in the structure of 
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either 𝐺𝑀𝐻! (for those data-driven networks included in the SMoI) or 𝐺𝐶"#$% (for those data-

driven networks omitted from the SMoI). 

Based on this logic, three test cases were planned, using the data and networks 

reported in a recently published data-driven fMRI-CPCA analysis of external data that derived 

three networks (a Language/Attention network – LANG/ATTN, a Responding network - RESP, 

and the default mode network - DMN), each of which showed hypo-activation among patients 

with schizophrenia relative to healthy controls during successful paired associates encoding, but 

not unsuccessful encoding or a control condition.  

In Test Case 1, we placed all three of these data-driven networks (RESP, LANG/ATTN, 

DMN) in the SMoI	(𝐻), to verify that 𝐺𝑀𝐻′ accurately captures combined SMoI- and task-timing-

predicted networks. In Test Case 2, we placed all but one of the data-driven networks (DMN) in 

our SMoI to verify that 𝐺𝐶"#$% accurately captures task-timing-predictable brain networks that 

are not accounted for by the SMoI. Finally, in Test Case 3, we verified that our program 

correctly specifies how networks in 𝐻 linearly recombine to estimate the spatial features of task-

timing related networks (the 𝐺𝑀𝐻′ component images).  

Together, these test cases were designed to verify that our program for ST-fMRI-CPCA 

successfully characterizes SMoI -predicted and -unpredicted sources of task-timing-predictable 

variance in BOLD signal, and to demonstrate how the performance of different models as 

predictors of task-based networks can be evaluated using ST-fMRI-CPCA. 

Test case data 

The test case data matrix 𝑍 and design matrix 𝐺 have already been described in Roes et 

al., (2021). Briefly, the 𝑍 matrix contained BOLD intensity values for 76470 voxels over 

80 × 242 = 3,660 preprocessed scans (80 subjects with 242 scans each). The columns in the 

subject- and condition-based 𝐺 design matrix coded 10 post-stimulus time points for each of the 

encoding conditions (successful encoding, unsuccessful encoding, and control condition) for 
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40 persons with schizophrenia and 40 age- and gender-matched healthy controls, totaling 

3,660 columns in 𝐺. In the original analysis, 17.50% of overall BOLD signal was predictable 

from task timing, and a portion of this overall BOLD signal variance was related to coherent 

network activity. We extracted.three data-driven networks (a responding network; RESP, a 

language/attention network; LANG/ATTN, and the default mode network; DMN) that accounted 

for 18.50%, 12.97%, and 8.02% of the task-timing related variance in BOLD signal, respectively, 

and which together accounted for 6.83% of overall BOLD signal variance. The images for these 

data-driven 𝐺𝐶 components were retained for testing of our ST-fMRI-CPCA program. 

Test Case H matrix construction 

Test Case 1 

In test case 1, the SMoI contained all three of the data-driven networks. To construct the 

𝐻 matrix, the component loadings for each data-driven network were converted into a vector of 

76,470 × 1 and horizontally concatenated to produce a 76,470 × 3 matrix. 

Test Case 2 

Test case 2 was designed to verify that ST-fMRI-CPCA analysis would correctly 

characterize model-unpredicted sources of task timing-related variance. Therefore, in test 

case 2, we included only two of the data-driven networks (RESP and LANG/ATTN) in our SMoI, 

omitting the DMN. As a result, the 𝐻 matrix for test case 2 contained 76,470 rows and 

2 columns.  

 

Test Case 3 

Test case 3 was designed to verify the computation of, and illustrate the meaning of, the 

𝑃% weights. 𝑃% weights specify how the networks from 𝐻 linearly recombine to produce the 

𝐺𝑀𝐻′ component loadings, which represent the SMoI-predicted spatial characteristics of task 

timing-related networks. As in the other test cases, since the data-driven networks had already 
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been measured, we could specify a SMoI in 𝐻 that would produce perfect 𝐺𝑀𝐻′ estimates of the 

data-driven networks. In this test case, we did this by building the 𝐻 matrix from a set of 

pseudo-networks that linearly recombined, using pre-specified weights, into the three data-

driven networks (See Figure 3), with the expectation that the 𝑃% weights will correspond to these 

pre-specified values.  

To create the first two columns of the spatial model 𝐻 for test case 3, the RESP network 

was split into two spatially non-overlapping pseudo-networks 𝐴 and 𝐵. Pseudo-network 𝐴 

contained the natural 𝐺𝐶 loadings for the left hemisphere, and Pseudo-network 𝐵 contained the 

natural loadings for the right hemisphere of the RESP network, with all other values set to zero, 

so that 𝑅𝐸𝑆𝑃 = 	(1.0 × 𝐴) + (1.0 × 𝐵).  

For the third and fourth columns of the 𝐻 matrix, in order to provide an illustration 

involving negative 𝑃% spatial model weights, we created Pseudo-networks  𝐶 and  𝐷	such that 

𝐿𝐴𝑁𝐺/	𝐴𝑇𝑇𝑁 = 	(1.00 × 𝐶)	 + (−1.00 × 𝐷) (See Supplement for details on Pseudo-network 

creation).  

For the fifth and sixth columns of the  𝐻 matrix, we created two final Pseudo-networks, 𝐸 

and 𝐹, that linearly recombined in a weighted manner to produce the natural loadings of the 

DMN, 𝐷𝑀𝑁 = 	(1.25 × 𝐸) + (0.25 × 𝐹) (See Supplement for details). Here, note that the 

𝑃% weights need not be, or sum to, 1.00. They are not correlations of the respective columns 

of 𝐻 with the 𝐺𝑀𝐻!component loadings. Instead, they represent how the respective columns of 

the 𝐻 matrix are weighted so that their sum produces the right singular vector of 𝐺𝑀𝐻!. 

As a result, the 𝐻 matrix for test case 3 contained 76470 rows and 6 columns (Pseudo-

networks A through F). Because each data-driven network could be perfectly described using 

weighted combinations of the columns of 𝐻, this analysis was expected to produce three 𝐺𝑀𝐻! 

components corresponding to the RESP, LANG/ATTN, and DMN. In this test case, the 

𝑃% weights should correspond to those weights that we pre-specified to produce the original 
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data-driven networks from known linear combinations of the columns of 𝐻 [e.g., for the RESP 

network, the six columns of 𝐻 should have  𝑃% weights of 1.0, 1.0, 0.0, 0.0, 0.0, and 0.0, 

respectively; See Figure 3)] 

Model performance metrics: 

For each test case, a ST- fMRI-CPCA analysis was carried out as previously described; 

briefly, in the regression stage, total variance in BOLD signal was partitioned into 𝐺𝑀𝐻!, 𝐺𝐶"#$%, 

and task-unrelated variance.  PCA was then conducted on the 𝐺𝑀𝐻! and 𝐺𝐶"#$%  matrices, 

producing both spatial and timing information for each component extracted from the model-

dependent (𝐺𝑀𝐻!) and model-independent (𝐺𝐶"#$%) sources of task timing-related variance. 

SMoI performance can then be evaluated using ST-fMRI-CPCA by examining the 

degree to which the SMoI captures task timing-related variance, produces an accurate estimate 

of the spatial configuration of task timing-related networks, and captures the features of the 

networks’ hemodynamic response. 𝑃% weights specify how the networks in 𝐻 linearly recombine 

to produce the 𝐺𝑀𝐻! components (i.e., the estimates of the data-driven task timing-related 

networks). Each of these metrics is expanded on below in the context of our test case analyses. 

Metric 1: Capture of task timing-related variance 

The first metric of model performance is the degree to which it captures task timing-

related variance in BOLD signal. We generated test cases where the SMoI was redundant with 

timing constraints, while excluding some networks from the column-constraints to test whether 

they are retrievable in the portion of row (time)-constrained variance that is not predictable from 

the column constraints. Therefore, in our test cases, 100% of the task timing-related variance 

attributable to any data-driven networks included in the SMoI specified in 𝐻 should be captured 

in 𝐺𝑀𝐻!, whereas 100% of task timing-related variance related any data-driven networks 

omitted from the SMoI should instead appear in 𝐺𝐶"#$% 



SPATIOTEMPORAL FMRI-CPCA      17 

Metric 2: Prediction of Spatial Characteristics  

The second metric of model performance is the degree to which it accurately retrieves 

the spatial configuration of task timing-related networks. Spatial correspondence is measured 

through spatial correlation. In the current test case analyses, the principal component loadings 

of 𝐺𝑀𝐻! should perfectly spatially replicate those of any data-driven 𝐺𝐶 networks that were 

included in the SMoI, whereas the principal component loadings of 𝐺𝐶"#$%  should perfectly 

spatially replicate any 𝐺𝐶 networks that were excluded from the SMoI. Where there is an exact 

spatial correspondence, there will be a perfect correlation (r = 1.00) between the loadings of 𝐺𝐶 

and 𝐺𝑀𝐻! (for any data-driven networks included in 𝐻) and between the loadings of 𝐺𝐶 and 

𝐺𝐶"#$%  (for any data-driven networks omitted from 𝐻). 

Metric 3: Prediction of Hemodynamic Characteristics  

The third criterion for model performance is the extent to which the model accurately 

estimates the HDR features of the data-driven networks. In our test case analyses, the temporal 

characteristics of the original 𝐺𝐶 components should therefore be exactly replicated, either in 

𝐺𝑀𝐻! or 𝐺𝐶"#$%(depending on whether the 𝐺𝐶 network was included or omitted from the SMoI, 

respectively). Operationally, there should be a perfect correspondence of the HDRs of the	𝐺𝑀𝐻! 

components with any 𝐺𝐶 networks modeled in 𝐻. Further, any differences in network HDR 

between patients and healthy controls, or as a function of time or task condition, should be 

preserved in the relevant portion of SMoI-predicted or -unpredicted variance in task-related 

BOLD signal.  

Linear recombination of spatial model networks to estimate task-based networks 

(spatial model weights, 𝑷𝑯 ): 

The 𝑃% predictor weights are equivalent to unstandardized beta coefficients, and they 

specify how the networks included in 𝐻 linearly recombine to estimate the spatial features of the 

task-timing related networks. In Test Cases 1 and 2, as a consequence of the expected exact 
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spatial match between 𝐺𝑀𝐻! components with our original data-driven networks, the  

𝑃%  predictor weights should have a magnitude of |1.0| for the match between each data-driven 

component included in 𝐻 and its 𝐺𝑀𝐻! counterpart. In Test Case 3, the  𝑃% weights should 

correspond to the weights (See Figure 3) that when applied to the columns of 𝐻 reconstitute the 

original data-driven networks. 

Results 

Test Case 1 (all data-driven networks in H): 

Figure 4 summarizes the results of Test Case 1. As expected, the	𝐺𝑀𝐻! scree plot 

indicated that 3 task-timing and SMoI-predicted components be retained, accounting for 

18.50%, 12.97%, and 8.02% of BOLD signal variance, which equal the variances attributable to 

each of the original data-driven components. 𝐺𝑀𝐻! component images for test case 1. As 

expected, there was a spatial correlation of r = 1.00, indicating perfect spatial match between 

the 𝐺𝑀𝐻! components and the data-driven networks they estimated. The HDRs are also 

presented in Figure 4; the temporal features of the modeled networks were also confirmed, and 

all Group, Time, and Encoding effects were reproduced exactly (omitted here for brevity – see 

Roes et al., 2021). Finally, as predicted, the 𝑃%  predictor weights specifying the relation of each 

data-driven network in 𝐻 and its 𝐺𝑀𝐻! component had a value of 1.00; all other 𝑃% 

predictor weights had a value of zero. 

Test case 2 (Two data-driven networks in H, DMN omitted from H) 

Figure 5 summarizes the results of test case 2. The 𝐺𝑀𝐻! scree plot indicated that two 

components be extracted, and the 𝐺𝐶"#$% scree plot indicated that one SMoI-unpredicted task 

timing-related component be retained. The spatial, variance, and temporal characteristics of the 

three components exactly corresponded to those of the data-driven RESP, LANG/ATTN and 

DMN. The only difference with the outcome of test case 1 was that, when we omitted the DMN 
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from the SMoI, the DMN was instead measured in 𝐺𝐶"#$%, the portion of task timing-related 

variance not predicted by the SMoI.  

Test case 3 (H consists of images that linearly recombine into the data-driven 

RESP, LANG/ATTN and DMN) 

Figure 6 summarizes the results of test case 3. Again, this test case produced 𝐺𝑀𝐻! 

components corresponding to the RESP, LANG/ATTN and DMN, identical with regard to 

variances and spatiotemporal features as those found in test case 1. The main objective of this 

test case was to verify and illustrate that 𝑃%  values specify how the columns of the SMoI H 

linearly recombine to estimate each task timing-related network. As expected, for the 𝐺𝑀𝐻! 

component corresponding to the RESP network, Pseudo-networks A and B had 𝑃% predictor 

weights of 1.00 and 1.00, with all other model weights equaling zero. For the 𝐺𝑀𝐻!component 

corresponding to the LANG/ATTN network, the PH predictor weights had values of 1.00 

and -1.00 for Pseudo-networks C and D, and the other pseudo-networks had  𝑃% predictor 

weights of zero. Finally, the 𝐺𝑀𝐻! component corresponding to the DMN had  𝑃% predictor 

weights of 1.25 and 0.25 for Pseudo-networks E and F, with all other  𝑃%  predictor weights 

equal to zero. These 𝑃% predictor weights were precisely those that we pre-specified as the 

weights that are applied to the pseudo-networks in order to linearly recombine into each data-

driven network, validating the computation of 𝑃% predictor weights in ST-fMRI-CPCA program. 

Discussion 

Constrained principal component analysis for fMRI (fMRI-CPCA) has emerged as a 

reliable data-driven method for measuring task-based networks and their associated 

hemodynamic response shapes. We introduce spatiotemporal fMRI-CPCA (ST-fMRI-CPCA), an 

extension of ‘data-driven’ fMRI-CPCA, for testing or comparing network models as predictors of 

the BOLD signal changes induced by task-based fMRI. A series of analyses systematically 

varied network models to either capture or omit known dimensions of task timing-related 
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variance. Three test cases demonstrated that our ST-fMRI-CPCA program correctly 

characterizes SMoI-dependent and –independent sources of task timing-related variance in 

BOLD signal. Examination of variance capture, spatial correspondence using spatial correlation 

of component loadings, temporal characteristics using HDR estimates, and 𝑃% predictor weights 

support these conclusions.  

These test cases also illustrate the metrics that can be used to test the performance of 

different SMoIs in accounting for task-based functional networks. An ideal model of task-based 

brain networks would perfectly capture the temporal, spatial, and variance characteristics of 

data-driven networks. Test case 3 illustrates how 𝑃% predictor weights specify how the networks 

included in a SMoI linearly recombine to estimate the spatial features of task-based networks.  

Limitations  

The test case analyses reported here served to validate the computation only of task-

timing related components of variance (𝐺𝑀𝐻!and 𝐺𝐶"#$%). The variance related to SMoIs but 

not task timing, 𝐵"#$&𝐻!, was not assessed. Since task-timing independent variance can be 

conceived of as conceptually equivalent to ‘resting state’ (Arfanakis et al., 2000), further 

developing this method to separately characterize task timing-predicted versus -unpredicted 

networks, and their time-courses, would provide a new methodology in the ongoing efforts to 

understand how/whether ‘intrinsic’ connectivity shapes and informs task-based network activity. 

Future directions and applications 

The extension of fMRI-CPCA that is demonstrated here has several important 

applications in functional neuroimaging research. For example, this method could be used to 

investigate the theory that task-based networks represent a ‘rebalancing’ of resting state 

networks for task conditions (Bzdok et al., 2016; Krienen, Yeo, & Buckner, 2014). Moreover, it 

allows for comparison between different resting state network models (e.g., Smith et al., 2009; 

Smith et al., 2012; Yeo et al., 2011), parcellation methods (Arslan et al., 2018), or task-based 

network models (e.g., Percival et al., 2020; Yarkoni et al., 2011) as predictors of task-timing 
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related brain networks. Finally, should a researcher wish to classify task-based networks 

according to a pre-specified model, ST-fMRI-CPCA would provide an automated way to do, via 

examination of  𝑃%  predictor weights.  

Conclusions 

Our test case analyses validate ST-fMRI-CPCA as a method that can separately retrieve 

networks, and the associated HDRs, from spatial-model-predictable and model-unpredictable 

aspects of task timing-related fluctuations in BOLD signal. ST-fMRI-CPCA can be used to 

compare different network or parcellation models as predictors of the spatiotemporal features of 

task-based networks.  
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Figure 1. Illustration of H matrix creation for use in ST-fMRI-CPCA.  In this example which 
illustrates the creation of the H matrix for test case 1, the data-driven RESP, LANG/ATTN, and 
DMN networks from previous work (Roes et al., 2021; in the left panel, shown overlaid onto a 
brain template) together comprise the spatial model of interest (SMoI). The matrix 
representation of this spatial model, H, is created by transforming the three-dimensional whole-
brain network image of intensity values (shown in simplified form in the middle panel) into 
vectors of length m voxels, and horizontally concatenating the vectors. The resulting H matrix 
(shown in simplified form in the right panel) contains a set of columns corresponding to each of 
the networks included in the SMoI. An additional column of 1’s can also be added in order to 
estimate the intercept (not pictured). 
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Figure 2. Illustration of relation of “data-driven” fMRI-CPCA with temporal constraints only to 
ST-fMRI-CPCA, which additionally uses spatial constraints.  In data-driven analyses, task 
timing-related variance (𝐺𝐶) is isolated by regressing 𝑍	onto temporal constraints (task timing 
information) specified in 𝐺.  In ST-fMRI-CPCA, the 𝐺𝐶 variance is further subdivided into the 
task timing-related variance that is predicted by a spatial model (𝐺𝑀𝐻!), and the task timing-
related variance not predicted by a spatial model (𝐺𝐶"#$%). PCA is then used to dimensionally 
characterize the spatiotemporal features of each subset of task timing-related variance. 
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Figure 3. Illustration of the pseudo-networks A-F that were included in the 𝑯 matrix for test 
case 3. Pseudo-networks A-F linearly recombine with weights of [1.0, 1.0, 0.0, 0.0, 0.0, and 0.0], 
respectively to produce the original data-driven RESP network. Pseudo-networks A-F linearly 
recombine with weights of [0.0, 0.0, 1.0, -1.0, 0.0, and 0.0] respectively, to produce the original 
data-driven LANG/ATTN network. Pseudo-networks A-F linearly recombine with weights of [0.0, 
0.0, 0.0, 0.0, 0.25, and 1.25] respectively, to produce the original data-driven DMN. Therefore, 
in the quality control demonstration of test case 3, these are the expected PH values for the 
three 𝑮𝑴𝑯′ components estimating the data-driven networks. 
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Figure 4. Visual summary of the results of ST-fMRI-CPCA test case 1. In this test case, all data-
driven networks were included in 𝑯. Each vertical panel represents a distinct component of 
𝑮𝑴𝑯′ and demonstrates that the task timing-related variance captured, spatial features 
(component loadings), and hemodynamic features of each	𝑮𝑴𝑯′ component corresponded to 
the data-driven networks that were included in 𝑯. Spatial correspondence between the data-
driven and spatial model-estimated networks were assessed using Fisher-transformed spatial 
correlation with df = 4000 (𝒁 values in parentheses). The final row shows the spatial model 
weights indicating how the spatial predictors in 𝑯 linearly recombine to produce the 𝑮𝑴𝑯′ 
component image estimating the task-based network. 
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Figure 5. Visual summary of the results of test case 2. In this test case, the RESP and 
LANG/ATTN data-driven networks were included in 𝑯, but the DMN was excluded. The left and 
middle vertical panels represent two distinct components of 𝑮𝑴𝑯′, and the right panel 
represents a single 𝑮𝑪𝒏𝒐𝒕𝑯 component. Examination of the variances captured, the spatial 
features (component loadings and spatial correlations), and the hemodynamic features of each 
component shows that the two 𝑮𝑴𝑯′ components exactly correspond to the data-driven 
networks included in 𝑯 (RESP and LANG/ATTN), and the 𝑮𝑪𝒏𝒐𝒕𝑯 component exactly 
corresponds to the DMN. The final row shows the spatial model weights specifying how the 
spatial predictors in 𝑯 linearly recombine to produce the 𝑮𝑴𝑯′component image. (Note that 
𝑮𝑪𝒏𝒐𝒕𝑯 components do not have spatial model weights, as they are independent from spatial 
model constraints). 
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Figure 6. Visual summary of the results of test case 3. In this test case, six pseudo-networks 
that linearly recombined to produce the RESP network, LANG/ATTN, and DMN were included 
in 𝑯 as specified previously in Figure 3. Each vertical panel represent a distinct 𝑮𝑴𝑯′ 
component. Examination of the variances captured, the spatial features (component loadings 
and spatial correlations), and the hemodynamic features of each component shows that the 
𝑮𝑴𝑯′ components exactly corresponded to the data-driven RESP, LANG/ATTN and DMN. The 
final row of this image shows the spatial model weights specifying how the spatial predictors 
in H linearly recombined to produce each 𝑮𝑴𝑯!component image. These values were as 
predicted and therefore validate that our ST-fMRI-CPCA program works as expected. 
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Methods 

Data-driven fMRI-CPCA: 

Step 1: Multivariate Multiple regression 

In the first step of a data-driven fMRI-CPCA analysis, multivariate least-squares linear 

regression is carried out. In this step, the data matrix of voxel activations across all scans (𝑍) 

(after masking out non-brain areas, and realigning, smoothing, spatially normalizing, mean-

centering and standardizing to a variance of 1.0) is regressed onto the task timing/design matrix 

(𝐺): 

𝑍 = 𝐺𝐶 + 𝐸, 

where 𝐶, the matrix of condition-specific regression weights, is  

𝐶 = (𝐺! × 𝐺)'( × 𝐺′ × 𝑍,  

and 𝐺𝐶 contains variability in 𝑍 predictable from the design matrix 𝐺 (i.e., the variability in BOLD 

signal predictable from the timing of stimulus presentations.) 

Step 2: Principal Component Analysis of task-specific variance 

In the second step of data-driven fMRI-CPCA, the matrix 𝐺𝐶 is subjected to singular 

value decomposition (SVD) to identify patterns of intercorrelated whole-brain voxel activity that 

are predictable from stimulus onset timing. Each component that results from this 

decomposition represents a potential functional network: 

𝑈𝐷𝑉′ = 𝐺𝐶 

In the decomposition, the left singular vector 𝑈 contains time-series information about 

the components; 𝐷 is the diagonal matrix of singular values that, when squared, are proportional 

to the variances explained by each component; The right singular vector 𝑉 contains spatial 

information about the components, and can be rescaled,  ./
√)'(

,  to produce component loadings 
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for each voxel. Component loadings can be overlaid onto a structural brain image to represent 

the spatial topography of the task-timing related functional network. 

Next, a matrix of predictor weights 𝑃 (the weights when applied to 𝐺 to produce 𝑈) is 

computed as the regression weights predicting 𝑈 from 𝐺. Predictor weights indicate the 

importance of each column in 𝐺 (i.e., each modeled post-stimulus timepoint for each subject 

and condition) to the temporal information about the brain network represented in 𝑈. Those 

columns in G that contribute most strongly to the variation over time captured in 𝑈 correspond to 

the peaks of the hemodynamic response. As a result, the fMRI-CPCA approach estimates a 

hemodynamic response (HDR) shape for each individual and condition separately, allowing us 

to interpret each network with respect to the conditions modeled in the design matrix 𝐺.  

Predictor weights can be entered into repeated-measures ANOVA to assess for the 

reliability of the hemodynamic response. A significant effect of post-stimulus time, along with a 

biologically plausible HDR shape, indicates that the network exhibits a reliable BOLD response. 

Group- and condition-related effects in estimated BOLD activity can also be tested using RM 

ANOVA. 

Spatiotemporal fMRI-CPCA: Computation and Characterization of task timing-unrelated portions 

of variance 

𝐵"#$&𝐻′ represents the portion of 𝑍 that can be explained by 𝐻 independent of 𝐺. 

In fMRI-CPCA, this corresponds to the BOLD signal variance that is independent of task timing 

but predictable from the spatial model (i.e., task-unrelated fluctuations in the model’s networks 

over the course of the scanning session). The parameter 𝐵"#$& is the matrix of spatial model 

regression weights for the regression of 𝑍 onto that part of 𝐻 that is independent of 𝐺: 

𝐵"#$& = [𝐼"×2 − 𝐺 × (𝐺′ × 𝐺)'( × 𝐺′] × 𝑍 × 𝐻 × (𝐻! × 𝐻)'(, 

where 𝐼"×2 is an identity matrix sized on the rows of 𝑍 (n subjects × s scans) that contains ones 

on the main diagonal and zeros elsewhere. 
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Should a researcher have interest in characterizing this portion of the variance, the 

matrix. 𝐵"#$&𝐻!would also be decomposed through principal component analysis as previously 

described. In this case, the spatial model weights 𝑃%"#$& represent the unstandardized beta 

coefficients produced by regressing the right singular vector of 𝐵"#$&𝐻! onto 𝐻. No timing-

related predictors would be produced estimating the HDR, because this portion of variance is 

not predictable from task timing.   

Finally, the last term in the full CPCA model, 𝐸, is the error term – i.e., the variance in 𝑍 

that cannot be estimated by 𝐺, 𝐻 or the interaction of 𝐺 and 𝐻: 

𝐸 = 𝑍 − 𝐺𝑀𝐻! − 𝐵"#$&𝐻! − 𝐺𝐶"#$%. 

Supplementary Details regarding creation of Pseudo-networks for Test Case 3 

Pseudo-networks C and D: 

To create Pseudo-networks C and D, we first created a three-dimensional checkerboard 

pattern in the same space as our brain scan images. Pseudo-network 𝐶 was created by taking 

the natural LANG/ATTN loadings wherever the checkerboard had a value of 1.00; Pseudo-

network 𝐷 consisted of the remaining natural LANG/ATTN loadings (where the checkerboard 

had a value of 0.00), multiplied by -1. As a result, subtracting Pseudo-network 𝐷 from Pseudo-

network 𝐶 produced the original LANG/ATTN loadings, such that 𝐿𝐴𝑁𝐺/	𝐴𝑇𝑇𝑁 = 	(1.00 × 𝐶)	 +

(−1.00 × 𝐷). 

Pseudo-networks E and F: 

To produce Pseudo-network F, the natural DMN component loadings for any voxels 

having a value of 1.00 in the checkerboard image were inverted (multiplied by -1.00), and the 

resulting image was rescaled by dividing all voxel values by 1.25. Then, Pseudo-network E was 

solved for such 𝐷𝑀𝑁 = 	(1.25 × 𝐸) + (0.25 × 𝐹), using linear matrix algebra in MATLAB.   


