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a b s t r a c t 

Patterns of functional connectivity are unique at the individual level, enabling test-retest matching algorithms to 

identify a subject from among a group using only their functional connectome. Recent findings show that accura- 

cies of these algorithms in children increase with age. Relatedly, the persistence of functional connectivity (FC) 

patterns across tasks and rest also increases with age. This study investigated the hypothesis that within-subject 

stability and between-subject similarity of the whole-brain pediatric connectome are developmentally relevant 

outcomes. Using data from 210 help-seeking children and adolescents, ages 6–21 years (Healthy Brain Network 

Biobank), we computed whole-brain FC matrices for each participant during two different movies (MovieDM and 

MovieTP) and two runs of task-free rest (all from a single scan session) and fed these matrices to a test-retest 

matching algorithm. We replicated the finding that matching accuracies for children and youth (ages 6–21 years) 

are low (18–44%), and that cross-state and cross-movie accuracies were the lowest. Results also showed that 

parcellation resolution and the number of volumes used in each matrix affect fingerprinting accuracies. Next, 

we calculated three measures of whole-connectome stability for each subject: cross-rest (Rest1-Rest2), cross-state 

(MovieDM-Rest1), and cross-movie (MovieDM-MovieTP), and three measures of within-state between-subject 

connectome similarity for Rest1, MovieDM, and MovieTP. We show that stability and similarity were correlated, 

but that these measures were not related to age. A principal component analysis of these measures yielded two 

components that we used to test for brain-behavior correlations with IQ, general psychopathology, and social 

skills measures ( n = 119). The first component was significantly correlated with the social skills measure ( r = - 
0.26, p = 0.005). Post hoc correlations showed that the social skills measure correlated with both cross-rest 

stability ( r = -0.29, p = 0.001) and with connectome similarity during MovieDM ( r = -0.28, p = 0.002). These find- 

ings suggest that the stability and similarity of the whole-brain connectome relate to the development of social 

skills. We infer that the maturation of the functional connectome simultaneously achieves patterns of FC that are 

distinct at the individual subject level, that are shared across individuals, and that are persistent across states 

and across runs —features which presumably combine to optimize neural processing during development. Future 

longitudinal work could reveal the developmental trajectories of stability and similarity of the connectome. 
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ndividually distinct patterns of functional connectivity 

Whole-brain functional connectivity (FC), also known as the “func-

ional connectome, ” comprises the complete set of correlations amongst
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OLD-signal time-courses in the brain. Aspects of FC are highly repro-

ucible at the group level ( Damoiseaux et al., 2006 ; Yeo et al., 2011 ),

ut FC matrices also contain patterns that are distinct at the individ-

al subject level ( Finn et al., 2015 ). This has been most clearly demon-

trated by studies applying test-retest matching algorithms, which show

hat an individual subject’s FC matrix is more strongly correlated with
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nother of their own matrices than with an FC matrix from any other

ubject. Most typically, this is determined by the greatest Pearson’s cor-

elation between pairs of FC matrices, making it possible to identify an

ndividual subject from among a group based only on their connectome

 Finn et al., 2017 , 2015 ). 

Matching algorithms can be run using data collected under a vari-

ty of acquisition states, most commonly resting state and conventional

ask conditions. In 2017, Vanderwal et al. showed that using movies as

n acquisition state for FC measures yielded matching accuracies up to

00% in a small sample of healthy adults; movies preserved and pos-

ibly enhanced the identification of individually distinct patterns of FC

ompared to task-free rest ( Vanderwal et al., 2017 ). A remarkable as-

ect of the adult human connectome is that FC matrices of individu-

ls can be matched successfully even if those matrices are derived from

ata collected during markedly different acquisition states. For example,

atching across a social action movie ( Ocean’s Eleven) and a nonverbal

ovie of abstract shapes and music ( Inscapes) yielded 94% accuracy,

nd matching across rest and the action movie achieved 90% accuracy.

n a larger sample from the Human Connectome Project, matches across

onventional tasks (e.g., working memory task, language task) and rest

ielded accuracies of 82–92% ( Finn et al., 2015 ). These results high-

ight the cross-state persistence of individually distinct patterns in FC in

dults. 

ndividualization as a maturational process 

Recently, this type of identification algorithm was applied to a large

ediatric data set ( Kaufmann et al., 2017 ). From a sample of 797 in-

ividuals (range 8–22 years, mean 15 ± 3.3), they showed that cross-

tate identification accuracies across resting state, a working memory

ask, and an emotion recognition task ranged from 37 to 60%. Using an

malgam measure of identification accuracies across rest and tasks to

alculate each participant’s “connectome distinctiveness, ” they further

howed a robust positive relationship between age and connectome dis-

inctiveness. The authors posited that individualization of the functional

onnectome is a maturational process that occurs during adolescence,

nd that this individualization emerges as the connectome becomes sta-

le across conditions. 

Connectome stability has typically been investigated as test-retest re-

iability, and unsurprisingly, pediatric samples have been shown to have

ower reliability for multiple whole-brain FC measures relative to adults

 Somandepalli et al., 2015 ; Thomason et al., 2011 ). Typically, lower reli-

bilities in pediatric data are thought to reflect variability in data quality

r compliance, but here, we build on the findings from Kauffman et al.,

o ask whether or not connectome stability might be a developmental

utcome in and of itself. We hypothesize that within-state (i.e., across

ifferent runs of the same condition, such as rest-rest) and cross-state

tability are developmental outcomes, and that the lower reliabilities of

C measures in children might, at least in part, be capturing a develop-

ental process rather than simply noise or poor compliance. 

onnectome similarity as a potential developmental measure 

Connectome-based identification algorithms rely on the ratio of

ithin- and between-subject correlations. Consequently, we were also

nterested in asking whether within-state between-subject connectome

imilarity might be a useful marker of functional brain development.

he conceptual developmental model is that if the changes occurring in

he developing connectome (e.g., Fair et al., 2008 , 2007 ) are normative

hanges that optimize overall efficiency, a majority of those pathways

nd connections might be similar across individuals. Between-subject

imilarity of the connectome would then be expected to increase as the

onnectome matures. Here, as an exploratory first step towards exam-

ning this idea using cross-sectional data, we investigated the relation-

hip between connectome stability, connectome similarity and behav-
oral measures of interest. s  
The present study uses naturalistic conditions to investigate within-

ubject stability and between-subject similarity of the functional con-

ectome in a psychiatric help-seeking pediatric sample (age range 6–

1 years). We used data from two runs of task-free rest and two

ifferent movie-watching conditions acquired within a single imag-

ng session from the publicly available Healthy Brain Network Biobank

 Alexander et al., 2017 ) to calculate FC matrices for each participant.

he matrices were then fed to a test-retest matching algorithm. We had

hree main predictions. First, we expected to replicate the finding that

ccuracies for this developmental sample would be lower than those

enerally obtained for adults across all conditions, especially for cross-

tate (rest-movie) matches. Second, we hypothesized that secondary

hole-brain measures of within-subject connectome stability (cross-rest,

ross-movie, and cross-state) would be interrelated, such that an individ-

al participant would be more likely to have higher cross-state stability

f they had high cross-rest stability. Third, we predicted that within-

ubject connectome stability and between-subject connectome similar-

ty would be positively associated with age, and possibly related to be-

avioral measures of interest. We selected three measures of develop-

ental interest: full-scale IQ, a measure of general psychopathology,

nd a measure of social skills. We hypothesized that greater stability

nd similarity would be associated with higher IQ, lower psychopathol-

gy scores, and better social skills. In particular, based on the finding

hat the organization of the pediatric connectome does not persist across

tates as it does for adults, we thought that cross-state (rest-movie) sta-

ility would be most likely to change from childhood to adulthood. We

hus hypothesized that cross-state stability would be the most develop-

entally relevant measure, i.e., that it would relate to behaviors more

trongly than the other brain-based measures. Because of the importance

f social cognitive development throughout the studied age range, the

ubness of “social brain ” regions, and the social nature of the movies

sed, we expected social skills to have the best chance of yielding a

ignificant relationship. 

ethods 

Sample and exclusion criteria. Data from the publicly avail-

ble Healthy Brain Network (HBN) were used for all analyses

 Alexander et al., 2017 ). This database includes fMRI scans and a bat-

ery of cognitive and clinical behavioral scores (as well as data from

ultiple other modalities including electroencephalography, voice sam-

les, saliva samples, and actigraphy) from a community-based sample

rom the greater New York area. All participants were seeking psy-

hiatric help. The Chesapeake Institutional Review Board approved all

tudy procedures. Written consent was obtained from all participants

8 years of age and older, and parental consent and participant assent

ere obtained from all other participants. For this study, data from re-

eases 1–4 were used, and 568 participants were accessed and selected

s being from either the Cornell or Rutgers sites, having at least one

1-HCP anatomical scan, as well as data for all four functional runs

f interest. Three-hundred and fifty-eight participants were excluded

or having a mean framewise displacement of greater than 0.3 mm in

ny functional run, leaving 210 remaining participants (69 females, age

ange 6–21 years, mean age 12.9 ± 3.6, 128 participants from Rut-

ers, referred to as HBN-210). The 0.3 mm threshold was selected as

eing mid-range within commonly used thresholds in developmental

C studies ( Dosenbach et al., 2017 ). See Fig. 1 for age distribution,

ead motion statistics, and distribution the Child Behavior Checklist

CBCL) total T scores to reflect the level of psychiatric symptomatol-

gy in the sample. A list of subject numbers is available on GitHub at

ttps://github.com/tvanderwal/HBN _ stability _ similarity . 

MRI Acquisition. MRI data were collected at Rutgers University us-

ng a Siemens 3-Tesla Tim Trio and at the Cornell Brain Imaging

enter using a Siemens 3-Tesla Prisma. A 3D T1-weighted structural

P-RAGE volume was acquired (TR = 2500 ms, TE = 3.15 ms, FA = 8°,

lice thickness = 0.8 mm, slices = 224). Echo-planar imaging sequences

https://github.com/tvanderwal/HBN_stability_similarity
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Fig. 1. Sample demographics, HBN-210. A. Age distribution of the 210 participants (69 females), mean age 12.9 ± 3.6 years (dashed line). B. Total T-scores for the 

Child Behavior Checklist (CBCL), a widely used questionnaire to assess child psychiatric and behavioral problems in which higher scores reflect higher degrees of 

clinical concern. Scores were available for 166 participants. The right-skew of these data indicates the psychiatric enrichment of the sample, as all participants were 

seeking psychiatric help (mean total CBCL = 57.2 ± 11.4; clinical cutoff is 65). C. As expected, age and decreasing head motion were strongly related. Mean framewise 

displacement was averaged across the full duration of the four conditions of interest (two resting state runs, and two movie runs) ( r = − 0.39, p = 4.1 × 10 − 9 ) for 

visualization. 
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or the functional runs used TR = 800 ms, TE = 30 ms, FA = 31°, slice

hickness = 2.4 mm, FOV = 204 mm, a multiband factor of 6, and voxel

ize = 2.4 × 2.4 × 2.4 mm. 

Experimental runs. The order of functional runs in the scanning ses-

ion was fixed, and was as follows: two sequential 5.1-minute runs

f eyes-open rest during which a fixation cross was displayed (Rest1

nd Rest2), a 10-minute run during which a clip (with sound) from

he movie Despicable Me was shown (MovieDM), and a 3.5-minute

un during which a short film called The Present (also with sound)

as shown (MovieTP). The MovieDM clip shows three children with-

ut parents asking their begrudging temporary guardian to read them

 bedtime story ( Coffin and Renaud, 2010 ). MovieTP is a short ani-

ation that tells the story of an unhappy boy who receives a three-

egged puppy for a gift ( Frey, 2014 ). Both stories are highly social, fea-

ure strong attachment themes, include a mix of poignant and humor-

us scenes, and were selected to be emotionally provocative. Techni-

al descriptions of the movie clips are available at the HBN study site

 http://dx.doi.org/10.15387/CMI_HBN ). Rest1 and 2 runs had 375 vol

ach (300 s), MovieDM had 750 vol (600 s), and MovieTP had 250 vol

200 s). To match the number of volumes across conditions for the main

nalyses, all functional runs were truncated to 250 vol. Where indicated,

ome analyses were conducted with differing numbers of volumes for

omparison. 

henotypic assessment 

Behavioral measures used in these analyses were collected at visits

ne and two, with MRI scanning occurring at visit three. Three behav-

oral measures of interest were selected. To capture global functioning,

e used the full-scale intelligence quotient (FSIQ) from the Wechsler

ntelligence Scale for Children, Fifth Edition (WISC-V), and the age-

djusted total T-score from the CBCL ( Achenbach, 1999 ). The CBCL con-

ists of 113 items and is filled out by a caregiver. Higher scores indicate

reater clinical concern across the full range of psychiatric symptom

omains. Third, we selected the total age-adjusted score from the So-

ial Responsiveness Scale-2 (here, SRS) ( Constantino et al., 2003 ). The

RS is a 65-item questionnaire that measures social skills, with higher

cores indicating greater impairment. It is classically used in the study of

utism spectrum disorders but is also used to capture social problems in

ther disorders. SRS scores have been shown to be normally distributed

n the general population. We focused on a social skills measure because

f the highly social nature of the movies used in this experiment, and

ecause of the dynamic social development that is known to occur in

he studied age range ( Blakemore, 2008 ; Blakemore and Frith, 2004 ;

raams and Crone, 2017 ; Mills et al., 2014 ). Of the 210 participants, all

hree behavioral measures were available for 119 participants, 100 of

hom were from the Rutgers University site. Demographics for this sub-
et (HBN-119), along with motion statistics and relevant correlations,

re shown in Supplementary Figure 1 s. 

ata preprocessing 

Preprocessing was performed using fMRIPrep version 1.0.15

 Esteban et al., 2019 ) including slice time correction, motion realign-

ent, and transformation into Montreal Neurological Institute space

2 mm MNI template, default option in fMRIPrep). Non-aggressive de-

oising was performed filtering out ICA-AROMA motion comonents, the

 rigid-body motion correction estimates, framewise displacement, and

 anatomical CompCor components ( Behzadi et al., 2007 ), and ICA-

ROMA motion artifacts. In addition to excluding all subjects with a

ean framewise displacement (FD) of greater than 0.3 mm in any func-

ional run, ICA-AROMA was used to mitigate motion artifact, as it has

een shown to remove spurious noise more effectively than spike regres-

ion ( Pruim et al., 2015 ). Motion censoring was not performed to pre-

erve the continuous time-courses and temporal structure of the movie-

atching data. Global signal regression was not performed. Data were

ot spatially smoothed because all planned analyses used a parcellation

chema. 

hole-brain FC matrices 

The primary analyses were based on FC connectivity matrices

enerated using 200 functionally defined regions-of-interest (ROIs)

 Craddock et al., 2012 ). For each subject, the mean time series of each

OI was extracted and Pearson’s correlation coefficients were calculated

etween all ROI pairs creating a 200 × 200 whole brain connectivity ma-

rix. Correlation coefficients were then Fisher z-transformed for statisti-

al inference. Duplicate ROI pairs were excluded, leaving 19,900 edges

n subsequent analyses. Each subject had an FC matrix for each of the

our conditions (Rest1, Rest2, MovieDM and MovieTP). 

est-retest matching algorithm 

The prediction procedure closely followed methods described previ-

usly ( Finn et al., 2015 ). Four databases of 210 matrices were created,

ne per subject for each condition (Rest1, Rest2, MovieDM, MovieTP).

he matching algorithm was run between two databases at a time. Each

ubject’s FC matrix was selected from one database, and the Pearson’s

orrelation coefficient was calculated between that matrix and every

ther matrix in the other database. If the matrix with the highest corre-

ation was from that same subject, the pairing was considered a match.

roup accuracy of the condition pairing was determined by calculating

he proportion of subjects for whom a match was obtained. This analy-

is was performed across all 12 possible state pairings (e.g., Rest1-Rest2,

est2-Rest1, MovieDM-Rest1, MovieTP-Rest1, etc.). 

http://dx.doi.org/10.15387/CMI_HBN
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To assess the significance of the accuracies produced by the al-

orithm, we performed nonparametric permutation testing using ran-

omly assigned false identities. The algorithm was run 10,000 times to

etermine how many times the falsely assigned pair was identified as

eing the most strongly correlated ( Wang et al., 2018 ). To assess the

egree to which head motion might contribute to successful matching,

e performed the identification algorithm using only the distribution

f framewise displacement values in each run (also from Finn & Shen,

015). We computed motion distribution vectors for each participant

rom the framewise displacement time courses of each condition. Sixty

ins were set to capture the grand mean of all runs ± 3 standard devia-

ions, and the 1 × 60 vectors were then used (in place of the FC matrices

bove) to run the matching algorithm. In this dataset, the grand mean

as 0.149 mm ± 0.20 mm, creating bins between − 0.44 and 0.74 mm.

imiting this to positive numbers resulted in 38 bins being used. To

heck for motion effect that might occur due to the small but statis-

ically significant differences in motion across conditions, we created a

otion-matched subset of subjects, selecting subjects who had no signif-

cant difference in head motion across conditions, and reran the match-

ng algorithm as above using only those subjects’ FC matrices. 

To evaluate the effect of condition duration on matching accura-

ies, we conducted two analyses. First, we maximized the number of

vailable volumes by creating matrices for Rest1, Rest2 and MovieDM

or all subjects, this time using the full duration of each condition (in-

tead of truncating at 250 volumes). We also created a new set of ma-

rices by concatenating across the two resting state runs (Rest1 + Rest2).

he matching algorithm was then rerun with these full-volume matrices

nd the already full-volume MovieTP matrices. For the second volume-

elated analysis, we held the amount of data in one matrix constant

Rest1, 375 volumes) and reran the identification algorithm while se-

uentially increasing the number of volumes in the other three condi-

ions. This process was repeated using the full duration of MovieDM

750 volumes). Here, we wanted to test the assumption that adding vol-

mes to an FC matrix results in linearly increasing matching accuracies.

Finally, to explore the network location of edges that contributed to

uccessful matches, we computed the differential power (DP) of each

dge. DP is an empirical probability that indicates the proportion of

imes a subject is matched to itself rather than to another subject based

n that edge. The measure therefore captures how much a particular

dge contributes to a successful match (see Finn and Shen 2015 for more

etails). We then averaged the DP of edges within each network for

he Rest1-Rest2, MovieDM-Rest1, and MovieDM-MovieTP pairings. We

sed the Yeo 7-network parcellation ( Yeo et al., 2011 ), and the network

embership of each Crad-200 ROI was assigned to whichever network

ontained the majority of its voxels. (This Craddock-to-Yeo network key

s provided in the paper’s GitHub repository). 

arcellation resolution 

In previous work, we have shown that increasing parcellation resolu-

ion can improve identification accuracies, but that it does so somewhat

qually across conditions ( Vanderwal et al., 2017 ). To test that finding

ere, we parcellated the data at all of the 43 resolutions defined in a

ublicly available atlas ( Craddock et al., 2012 ). The number of clusters

anged from 10 to 950. We then ran the matching algorithm at each res-

lution, using the Rest1-Rest2, MovieDM-Rest1, and MovieDM-MovieTP

airings. All other analyses used the Crad-200 parcellation. 

can duration 

To test the effect of scan duration on the cross-state and cross-run

atching accuracies, we ran the identification algorithm while varying

he amount of data used, from two to 375 volumes, adding sequential

Rs one at a time. 
umber of edges 

To test if one condition required fewer edges to facilitate success-

ul identification of individual subjects, we ran the algorithm using an

ncreasing number of edges. Edges were rank-ordered from least con-

ributory (lowest DP) to most contributory (highest DP). We then ran

he algorithm using the lowest 0.5% of edges, and successively repeated

he procedure adding an additional 0.5% of edges until all edges were

ncluded. Arranging edges according to DP rather than spatial location

nabled cross-condition comparisons across edges that contributed to

ccuracy with similar power. If, for example, successful matches could

e made with movie-watching data using fewer edges than with rest-

ng state data, we would expect a sharp increase in the movie accuracy

elative to resting state data at an earlier point on the x-axis. 

ex-based influence on matching algorithm 

To investigate the degree to which having a mixed sex sample in-

uenced the identification accuracies in this developmental sample,

e created three cohorts that were matched in sample size, and that

id not differ significantly in mean age or head motion. The cohorts

ere defined using the R MatchIt package for propensity score analysis

 Ho et al., 2007 ). The algorithm was then run separately on each sample

ollowing the same procedure used above. 

onnectome stability 

We define stability as the edge-wise correlation between a subject’s

hole brain FC matrix collected during two separate functional runs.

hese basic whole-brain correlations were calculated for each subject for

ross-run (Rest1-Rest2), cross-movie (MovieDM-MovieTP), and cross-

tate stability (MovieDM-Rest1). A mean stability measure was also cal-

ulated by averaging across these three measures for each subject. 

onnectome similarity 

Between-subject similarity is defined as the average of the corre-

ations between a subject’s FC matrix and that of every other subject

ithin a given condition (Rest1, MovieDM, MovieTP). We note that this

s an FC-based measure, and therefore can be computed for both movies

nd rest, as opposed to a time-course based correlation, such as inter-

ubject correlations or ISCs ( Hasson et al., 2004 ). 

tability-similarity relationships 

We then tested for linear relationships between each subject’s sta-

ility and similarity measures. Due to the possibility that head motion

rtifact might still be present in these whole-brain measures of stability

nd similarity for some participants despite rigorous preprocessing and

otion thresholds, we performed follow-up multiple linear regression

nalyses including each subject’s average framewise displacement from

he relevant condition(s) of interest as a covariate. 

rain-behavior correlations 

To test the hypothesis that whole-brain stability and/or similarity is

evelopmentally relevant, we first aimed to reduce the dimensionality

f the six measures of connectome stability and similarity by conducting

 principal component analysis. The resulting components explaining at

east 20% of the variance were selected, and correlations between those

omponents and the three behavioral measures of interest (IQ, CBCL

core, and SRS score) were calculated. 
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A. Identification accuracies of test-retest matching algorithm

B. Network distribution of most contributory edges

Fig. 2. Test-retest matching accuracies, HBN-210. A) 

Matching accuracies of the identification algorithm ranged 

from 18 to 44%, with the highest accuracies attained by the 

only true condition pairing, Rest1-Rest2 (and vice versa). 

Movie-TP pairings yielded the lowest accuracies (18–23%), 

and cross-movie and MovieDM-Rest pairings were in the 

middle (26–36%). Permutation testing showed that differ- 

ences of greater than 8.7% correspond to p < 0.05. B) When 

examining the distribution of the contributory edges by 

looking at the mean differential power (DP) by network, 

between-network edges contribute to successful identifica- 

tions more often than within-network edges. As has been 

previously shown, heteromodal cortex such as the fron- 

toparietal, default and dorsal attention networks exhibited 

high mean DP, but overall, DP appears to be widely dis- 

tributed. Condition-based differences appear to be a mat- 

ter of degree rather than demonstrating clear condition-by- 

network effects. 
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Head motion: As expected, mean framewise displacement correlated

trongly with age ( r = − 0.39, p = 4.1 × 10 − 09 , see Fig. 1 ). Mean FD by

ondition was Rest1 = 0.141 mm; MovieDM = 0.147 mm; Rest2 = 0.15 mm;

ovieTP = 0.16 mm). A repeated-measures ANOVA of mean FD across

onditions was statistically significant (F(3209) = 6.74, p = 0.0002). Dif-

erences were driven by greater head motion during MovieTP relative

o each of the other conditions ( p < 0.01). These patterns also held true

n the behavioral subsample of 119 participants. Head motion was not

orrelated with any of the three behavioral measures of interest (see

upplementary Figure 1 s). 

ccuracies of identification algorithm 

For matches across all conditions, matching accuracies ranged from

8 to 44% ( Fig. 2 A), whereas permutation testing using falsely assigned

ubject pairs yielded accuracies of 0.3–0.4% (Supplementary Figure 2 s).

he only pairing of a truly repeated condition (Rest1 and Rest2) had the

ighest accuracies (43% and 44%), while the four cross-state (Movie-

est) pairings had the lowest (18–36%). The two cross-movie accuracies

ere comparable (27% and 34%). To statistically assess these differ-

nces in accuracy, we performed permutation testing. Condition labels

ere randomly shuffled for each subject in each permutation. Accuracy

as calculated for all condition pairs (each one a random shuffling of

ctual conditions) and subsequent pair-wise differences were computed

cross the accuracy matrix. The resulting 60,000 differences (or deltas)

ere ordered from smallest to greatest to form the null distribution. The

op 2.5th percentile of these deltas represented a p < 0.05 (two-tailed)

ikelihood that a given pair of accuracies were different, which corre-

ponded to a difference in accuracies of 8.6% and above. 

When the algorithm was re-run using the full duration of each scan

o compute FC matrices for each condition (i.e., not limited by the 250

olumes of MovieTP), the accuracies shifted, with a new range of 20–

9%. In most cases, pairings of mismatched durations got worse (e.g.,

ovieDM-MovieTP went from 27 to 20%), and pairings with longer du-

ations improved (e.g. Rest1-Rest2 accuracies went from 43 to 48%).
ia permutation testing, the only shifts that reached significance were

ecreases in accuracy for both of the cross-movie pairings. Because of

hese decreases, we performed a second analysis where the number of

olumes in one matrix was held constant, and the algorithm was repeat-

dly rerun as volumes were sequentially added to the other matrix. This

howed that adding data does not result in a linear increase in accuracies

n all cases, and in fact, some trends appear to be nonlinear. When us-

ng motion distribution parameters alone to match subjects, accuracies

anged from 2 to 8%, and when using motion-matched groups ( n = 190),

ercentages ranged from 20 to 46% and followed the same patterns ob-

erved in the full sample. Results of these supporting analyses are shown

n Supplementary Figure 2 s. 

When assessing the network distribution of DP, we found that

etween-network edges contributed to successful identification more

ften than within-network edges. As has been previously shown, het-

romodal cortex such as the frontoparietal, default and dorsal attention

etworks exhibited high mean DP ( Finn et al., 2015 ; Vanderwal et al.,

017 ), which may relate to higher reliability of FC measures in these

egions ( O’Connor et al., 2017 ). Overall, DP appears to be widely dis-

ributed. Condition-based differences appear to be a matter of degree

ather than demonstrating clear condition-by-network effects. 

arcellation resolution 

As expected, when testing with different parcellation resolutions,

dentification accuracies increased as parcellation resolution increased

or all pairings (cross-run, cross movie, and cross-state) (see Fig. 3 A).

he highest accuracy attained was for Rest1-Rest2 pairings, which was

0%. All other analyses presented here used the Crad-200 parcellation.

can duration 

Within the range of available volumes, longer scan durations im-

roved matching accuracies ( Fig. 3 B). After 100 volumes, accuracies

ppear to increase incrementally with added volumes, and the relation-

hips across conditions (i.e., cross-rest accuracies are greater than both

ross-movie and cross-state matches, which are similar to each other)
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Fig. 3. Effects of processing parameters on identification accuracies across different pairings. Altering preprocessing parameters did not change the overall pattern 

of results. The only properly matched pairing, Rest1-Rest2 (red line), achieved higher accuracies than either the cross-movie or the cross-state pairings, regardless 

of the parcellation resolution, the number of volumes, or the number of edges used. The dashed line in A denotes the Crad-200 parcellation, and in B denotes the 

truncated 250 volumes, both of which were used for all other analyses. 
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ppear consistent. We also point to Supplementary Figure 3E for differ-

nt results when volumes beyond the studied range were included. 

umber of edges used 

Including more edges yielded higher accuracies overall. Again, the

rajectory for the Rest1-Rest2 pairing separates out from both the cross-

tate and cross-movie pairings ( Fig. 3 C). 

ex-based influence on matching algorithm 

The algorithm was rerun using three separate cohorts (females,

ales, mixed, all n = 69). As expected, matching accuracies were higher

han in the original analysis ( N = 210), but this was true and similar

cross all three cohorts, so was attributed to sample size rather than to

ex-based differences. 

To statistically assess the differences in accuracy across the three co-

orts, we again performed permutation testing, this time extracting two

andom groups of 69 participants without replacement from HBN-210.

or each iteration of the 1000 iterations, we reran the identification

lgorithm separately on both random cohorts of 69 participants, and

etermined the differences (or deltas) in accuracy within each condi-

ion across the cohorts. Null distributions of these differences were cre-

ted for each condition pair, where the top 2.5th percentile represented

 < 0.05 (two tailed). The smallest possible difference across all distri-

utions that reached significance was 13%, while the largest difference

n the three actual cohorts was 11.6%. Matching accuracies were there-

ore judged to be comparable across the cohorts, indicating that using a

ixed sex sample for the main analysis did not substantially impact the

esults even in this developmental sample. The cross-condition pattern

f matching (i.e., the overall color layout on the matrices) was also com-

arable to the main analysis. These results are shown in Supplementary

igure 3 s. 

onnectome stability and similarity 

Fig. 4 illustrates how stability and similarity measures were calcu-

ated, and how they relate. As expected, all six measures were signifi-

antly correlated with head motion (see Supplementary Figure 4 s), so to

nvestigate relationships among these measures, we ran a linear regres-

ion model with motion as a covariate. The motion covariate was created

y averaging the mean FD across all runs that were used in computing

he resulting brain metric (e.g., for cross-rest stability, the mean FDs

rom Rest1 and Rest2 were averaged). The partial correlation coefficient

nd accompanying p-values are reported for the variables of interest. We

ound that all pairwise measures of stability were positively correlated

s follows: cross-rest and cross-state, r = 0.62, p = 9.2 × 10 − 24 ; cross-

tate and cross movie, r = 0.62, p = 9.2 × 10 − 24; cross-rest and cross-

ovie, r = 0.32, p = 1.6 × 10 − 6 ). Between-subject similarity during Rest1
nd MovieDM were also correlated ( r = 0.34, p = 6.0 × 10 − 7 ). When

ach subject’s three stability scores and their three similarity scores were

veraged, mean stability and mean similarity were also strongly corre-

ated ( r = 0.65, p = 6.5 × 10 − 26 ), showing that participants with higher

ithin-subject stability also demonstrated higher between-subject simi-

arity. Contrary to predictions, no significant relationships with age were

ound when testing for either linear or quadratic fits (see Supplementary

igure 5 s). Further, neither mean stability nor mean similarity were cor-

elated with age (stability: r = − 0.0001, p = 0.99; similarity: r = 0.0106,

 = 0.91). For completeness, all pair-wise correlations among the six

econdary brain measures with each other without covarying for head

otion —and correlations with head motion and age —are provided in

upplementary Figure 4 s. 

We were still concerned that the apparent interrelated nature of these

easures could be driven by head motion, such that a participant with

ow stability due to noise from head motion would also be expected to

e less similar to the other participants because of that same noisiness.

s a second test, we binned participants by mean FD, and selected a

ange of bins to get the most subjects with the least spread in FD. Using

D of 0.13–0.15 mm, we had 33 participants. Neither stability nor sim-

larity in this subsample was significantly correlated with FD, but the

obust correlation between stability and similarity persisted ( r = 0.81,

 = 1.17 × 10 − 8 ). 

rain-behavior correlations 

Due to the interrelatedness of the six measures of connectome sta-

ility and similarity, a principal component analysis (PCA) was used to

educe dimensionality. The PCA yielded components that explained 3–

0% of the variance. The top two components explained 59% and 24%

f the variance and were selected for subsequent analyses (see Fig. 5 A

nd B for scree plot and component loadings, respectively). Component

 was weighted toward the within-subject stability measures, and Com-

onent 2 was weighted towards the movie-related measures, particu-

arly cross-movie stability. Age did not significantly predict either com-

onent in a linear regression model, also using sex, site, and head mo-

ion (Component 1, partial r = − 0.091, p = 0.33; Component 2, partial

 = 0.14, p = 0.15). 

To investigate relationships between these components and behav-

or, we ran linear regression models predicting each component from

he behavioral measures of interest. Sex, site, and motion covariates

ere also included. Partial correlation coefficients and accompanying

-values are reported for the regressors of interest. When using age-

djusted measures of psychopathology and general behavioral problems

CBCL), full-scale IQ (FSIQ), and social responsiveness score (SRS), Com-

onent 1 was significantly correlated with SRS ( r = − 0.26, p = 0.005).

hough it did not meet significance with Bonferroni correction, we also

ote a strong correlation between Component 1 and CBCL ( r = − 0.24,

 = 0.01) ( Fig. 5 C). None of the other relationships between brain com-
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Fig. 4. Whole-brain within- and between-subject measures of FC correlations, N = 210. Six measures of connectome stability and similarity were calculated for each 

subject. Plot A shows the relationship of cross-rest and cross-state within-subject connectome stability. For between-subject similarity, we calculated the correlation 

between each subject’s matrix and a matrix from every other subject for each condition. Each subject’s similarity value is the average of those between-subject 

correlations for a condition. Plot B shows the relationship of between-subject connectome similarity for MovieDM and Rest1. For C, each subjects’ three measures 

of stability and similarity were averaged and plotted, with age mapped onto that relationship using color. All measures plotted are the residuals after regression of 

head motion. Correlations without covariates between all six measures, and with head motion and age, are shown in supplementary Figure 4 s. 
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onents and behavior were significant. CBCL and SRS were subsequently

ound to be strongly correlated ( r = 0.71, p = 3.8 × 10 − 19 ) and all CBCL

ubsets (e.g., Social Problems, Attention Problems, Somatic Complaints,

tc.) were significantly correlated with SRS. Applying a median split

o the sample, as well as splitting the CBCL into high and low clinical

oncern subcohorts (based on the cutoff score of 65), showed that the

orrelations between CBCL and SRS were still significant in all splits, and

herefore not skewed by those participants with more severe symptoma-

ology. When the six stability and similarity measures were correlated

ith either CBCL or SRS while controlling for the other, no significant

elationships were observed. The association between CBCL and SRS has

een shown previously, especially in clinical samples ( Constantino and

razier, 2013 ; Hus et al., 2013 ). Because of this, and the subthreshold
ignificance of the component-CBCL correlation, SRS was the only vari-

ble carried forward for post hoc tests. 

We then conducted post hoc multiple linear regressions to test

or relationships between SRS and the six brain measures of stabil-

ty and similarity. Again we report both the correlations (r- and p-

alues) of these pair-wise correlations, as well as the partial r- and

-values from a linear model that included head motion, age, sex,

nd site as covariates ( Fig. 5 D). We found that within-subject stabil-

ty for rest was significantly correlated with SRS ( r = − 0.29, p = 0.001).

etween-subject similarity during MovieDM was also significantly

orrelated with SRS ( r = − 0.28, p = 0.002). These post hoc regres-

ions were corrected for multiple comparisons (Bonferroni corrected,

 < 0.008). 
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Fig. 5. Brain-Behavior Correlations, n = 119. 5A) 

A Principal Component Analysis performed on 

the six secondary brain measures (from Fig. 4 ) 

yielded the scree plot shown here. The top two 

components were selected for further analyses . 

5B) Component 1 explained 59% of the variance 

and was weighted towards the within-subject sta- 

bility measures. Component 2 explained 24% of 

the variance, and was weighted towards movie- 

related measures, especially cross-movie stability. 

We then tested the two components for correla- 

tions with the three developmental measures of 

interest, CBCL (general psychopathology and be- 

havioral problems), full-scale IQ, and a social re- 

sponsiveness score (SRS). We report standard cor- 

relations on rows denoted “r/p ”, and partial corre- 

lations after including head motion, age, sex and 

site as covariates, on rows denoted “partial r/p. ”

5C) A significant relationship was identified be- 

tween component 1 (FC stability) and social skills. 

We also note the strong relationship (with aster- 

isk) between CBCL and Component 1 that did not 

reach statistical significance after Bonferroni cor- 

rection. 5D) Post-hoc statistical tests between SRS 

and the 6 secondary brain measures showed sig- 

nificant relationships between SRS and cross-rest 

stability, and between SRS and MovieDM simi- 

larity (Bonferroni corrected, p < 0.008, significance 

indicated by bold text). Directionality of the brain- 

behavior correlations indicate that higher stability 

or similarity are associated with lower SRS scores 

(better social skills). 
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This study investigated within-subject stability and between-subject

imilarity of the whole-brain connectome during movies and rest in a

sychiatrically enriched sample of 210 children and adolescents, ages

–21 years. As expected, we replicated the finding that matching accu-

acies for this developmental sample were low ( Kaufmann et al., 2017 ).

e also extended the finding of low cross-state stability in children to in-

lude naturalistic conditions, showing that both cross-movie and cross-

tate (movie-rest) matching accuracies were particularly low in this sam-

le. Also as hypothesized, we showed that within-subject connectome

tability (cross-rest, cross-movie, and cross-state) were correlated with

ach other, meaning that an individual participant was more likely to

ave higher cross-state stability if they had high cross-rest stability. The

ame was also true for between-subject connectome similarity. Addi-

ionally, connectome stability and similarity were shown to be largely

nterrelated measures, even when accounting for head motion. Contrary

o our hypotheses, we found no relationship between either connectome

tability or connectome similarity and age. In a subset of 119 partici-

ants, we identified significant brain-behavior relationships using the

tability and similarity measures: cross-rest stability was significantly

orrelated with the SRS, an index of social skills. Further, connectome

imilarity during the movie Despicable Me was significantly correlated

ith social skills. Overall, we conclude that stability and similarity of

he functional connectome may be meaningful developmental markers,

ut multiple methodological questions and caveats remain that can be

specially influential when conducting these types of analyses in chil-

ren and adolescents. 
ingerprinting in developmental samples 

We showed that test-retest matching algorithms of whole-brain func-

ional connectivity matrices in a pediatric sample are low overall, and

hat accuracies for cross-state and cross-movie matches are especially

ow. For example, matching accuracies across two different cartoons

rom the same scan session in this study were 27% and 34%. In a previ-

us study in healthy adults (albeit with a smaller sample of 31 partici-

ants), we found cross-movie matching accuracies to be between 80 and

4%, even across markedly different movies and with one-week inter-

can intervals ( Vanderwal et al., 2017 ). In other words, patterns of func-

ional connectivity (FC) that are distinct at the individual subject level

ppear to persist (or are identifiable) across states for healthy adults,

ut much less so in this developmental, psychiatrically enriched sam-

le. This observation supports the idea that connectome stability and

imilarity are different in children than adults. Additionally, these data

how that applying fingerprinting algorithms in developmental and/or

sychiatric samples raise methodological considerations. Here we dis-

uss six relevant issues. 

A first potential caveat to this finding relates to scan duration, or the

umber of volumes used to construct each matrix. The main analyses

sed matrices that were all truncated at 250 volumes to match the short-

st movie clip (MovieTP). When we re-ran the matching algorithm using

he full duration of available volumes for Rest1, Rest2 (375 volumes),

nd MovieDM (750 volumes), accuracies shifted both up and down, and

he only shifts judged to be significant were decreases in accuracy. Fur-

hermore, whereas we had hypothesized that adding data would result

n an increase in accuracies across the board, incrementally changing
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a  
he number of volumes in one matrix of a paired condition shifted ac-

uracies nonlinearly in some cases (Supplementary Figure 2 s, panel E).

ogether, these results indicate that the identification of individually

istinct patterns of FC depends on the amount of data used to construct

he FC matrices and that more data does not necessarily confer an in-

rease in fingerprinting accuracies. 

It would be useful in future work to determine whether there are par-

icular thresholds for data quantity for fingerprinting algorithms, and

hether these differ in children versus adults, and across states (or even

ifferent movies). Given the limitations of the data used here, it is pos-

ible that individually distinct patterns of FC are present in children to

he same degree as in adults, but that more data would be required to

dentify them in children. 

A second finding was that increasing the parcellation resolution

ncreased identification accuracies for all combinations of conditions

 Fig. 3 B). For example, the rest-rest pairing increased from 40% at 250

lusters to 60% at 950 clusters, which suggests that parcellation resolu-

ion is a nontrivial issue. This may relate to improved reliability of FC

t higher parcellations ( Xu et al., 2016 ). Here, we used an adult-based

esting-state parcellation scheme ( Craddock et al., 2012 ). In a develop-

ental sample, this could be a significant issue, and using better par-

ellations that are defined within the study sample ( Shen et al., 2013 ),

r that are condition-specific ( Salehi et al., 2019 ) may reveal that indi-

idually distinct patterns in FC are robustly present during childhood if

mall differences in topography are better accounted for. Another po-

ential avenue to fully optimize this approach would be to use hyper-

lignment ( Conroy et al., 2013 ; Guntupalli et al., 2018 ; Haxby et al.,

011 ; Nastase et al., 2019 ) in a developmental sample, though the data

uration (upwards of 20 min) required for this approach —even with

ovie-watching —remains a challenge. 

A third limitation was that the only true matched pairing available

or the algorithm was between Rest1 and Rest2, as the HBN data set

oes not include two runs of the same movie. One of the hypotheses

hat originally motivated this study was that individually distinct pat-

erns of functional connectivity may exist in children when the brain is

eing driven under naturalistic conditions, but that those connectivity

atterns do not yet (either via Hebbian learning or repeated use, etc.

 Keysers and Perrett, 2004 )) persist as part of the intrinsic functional

onnectome. Whether the pediatric connectome is markedly more sta-

le across runs of the same movie relative to rest, or relatedly, whether

atching accuracies would be higher for pairings using the same movie

n children, remain open questions. 

Fourth, head motion artifact is a major issue in any developmental

tudy of functional connectivity ( Grayson and Fair, 2017 ; Power et al.,

012 ), and because fingerprinting algorithms rely on a ratio of within

nd between subject measures of FC, head motion may be confound-

ng in complex ways. The head motion treatment in these analyses was

uite strict: we excluded any participant with greater than 0.3 mm mean

ramewise displacement, even if they only exceeded the threshold in a

ingle run. We also used ICA-AROMA to remove motion-related arti-

act ( Pruim et al., 2015 ), tested for residual motion effects by running

he algorithm with just motion-based outputs ( Finn et al., 2015 ), and

n a subsample where motion across conditions was matched. However,

s below, cross-run and cross-state stability were correlated with mo-

ion, and insofar as these measures are the building blocks of a finger-

rinting algorithm, and due to the robust and intractable relationship

etween age and head motion, the influence of head motion on these

esults remains a concern. Future studies in high-motion groups that use

ovie-watching could help determine whether motion correction strate-

ies that leave the time-course intact (as opposed to motion censoring in

hich volumes are removed) are superior and could further investigate

he role of motion artifact in these types of algorithms. 

Fifth, low accuracies could be due to issues with movie choices and,

n some cases, the order within the scanning session. The Present was

hown last during the scanning session, and it is possible that the data for

ovieTP suffered because of this order effect even beyond the movie’s
levated head motion. Additionally, it is possible that idiosyncratic pat-

erns of FC were evoked by these particular movies, and though our

revious work in adults suggests this should not be the case, additional

ork is needed to rule out movie-specific effects on fingerprinting algo-

ithms. 

Finally, though we tested for the effects of some preprocessing pa-

ameters ( Fig. 3 ), other parameters, such as the use of global signal re-

ression, remain untested. While some fingerprinting papers used GSR

 Finn et al., 2015 ), others (including this one) did not ( Kaufmann et al.,

017 ; Vanderwal et al., 2017 ), which potentially confounds compar-

sons of results. 

onnectome stability and similarity as developmental measures 

We calculated six secondary measures of whole-brain correlations:

hree within-subject measures of FC stability (cross-rest, cross-state, and

ross-movie), and three between-subject measures of FC similarity dur-

ng Rest1, MovieDM, and MovieTP. Analysis of these measures revealed

hat the different types of stability are correlated, as are similarity un-

er different conditions. Further, if a participant had high within-subject

tability, they generally also exhibited a higher degree of similarity with

he connectomes of the other participants ( Fig. 4 C). These results sug-

est that these organizational characteristics are interrelated, and possi-

ly interdependent, in the maturation of the pediatric connectome. Put

ifferently, we speculate that many of the patterns of FC that emerge

uring development ( Fair et al., 2007 ; Grayson and Fair, 2017 ) do so

o optimize increasingly complex information processing, and that be-

ause the processes being optimized are largely shared, many optimized

athways are similar across individuals. When a connectome reaches

hat “optimized ” set of patterns (through repetition or FC reorganiza-

ion, however that might happen), that connectome would also be more

table or persistent across time and across states. Within this concep-

ual framework, neural maturity of FC relationships in a subset of edges

ould be reflected in both stability and similarity. 

A remaining consideration is that some form of noise or diminished

ignal reliability could explain the interrelatedness of these measures.

oth stability and similarity were significantly correlated with head mo-

ion. However, in a linear model, when head motion was covaried, the

elationship remained significant. We also selected a cohort of subjects

ith minimal range of FD (0.13–0.15 mm, n = 33). In this subcohort,

D was not correlated with either stability or similarity, but stability

nd similarity remained strongly correlated. None of these analyses are

efinitive, however, and questions about the role of head motion in our

ndings remain. We cannot exclude other confounds, including atten-

ional differences, varying levels of arousal or actual sleep; such con-

ounds may be more problematic than usual in developmental, psychi-

tric samples. 

Aspects of neural stability, or conversely, within-subject measures

f variability, have long been of interest in developmental research.

cIntosh et al. argue that neural variability provides options and ef-

ciency to the brain. They showed that variability of evoked potentials

uring task-based EEG increased with age, and that increasing neural

ariability accompanies decreasing behavioral variability and improved

ask performance ( McIntosh et al., 2008 ). Similarly, using fMRI, Hutchi-

on et al. investigated the dynamics of FC organization during task and

est in participants ages 9–30 years old ( Hutchison and Morton, 2015 ).

uring rest, adults and children expressed the same number of net-

ork configurations or states, but during task, adults exhibited a larger

epertoire of states, as well as more (and faster) transitions between

tates. However, in participants across ages 9–32 years, Marusak et al.

ound a positive association between age and the temporal variability

etween functional connectivity networks during rest ( Marusak et al.,

017 ). In an early pediatric movie-watching studies, Emerson et al.

ompared FC during rest and movie-watching in healthy six-year old

hildren ( Emerson et al., 2015 ). Using both independent component

nd seed-based analyses, they showed that three networks (frontal con-
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rol, default and dorsal attention) reconfigured during movie-watching

uch that frontal control-default network connectivity was upregulated,

nd frontal control to dorsal attention network connectivity was down-

egulated. They observed the same pattern in adults but noted that

he amount of change from resting state to movie-watching (i.e., the

ross-state shift in FC) was less pronounced for children relative to

dults. While these findings do not support the idea that cross-state

ifferences are more pronounced for children, they do suggest that

ge-based differences in FC organization are more prominent during

ask/movie than resting state in typical development. They also under-

core the importance of investigating cross-state differences in FC across

evelopment. 

ocial scores and functional connectivity 

Using a principal component analysis, we showed that the variance

aptured in these large-scale, interrelated secondary brain measures of

tability and similarity relates to a broad measure of social skills, the

RS-2. Post hoc analyses showed that better social skills correlated with

reater stability across resting state runs ( r = − 0.029, p = 0.001), and

lso with greater between-subject similarity of the connectome during

he Despicable Me movie run ( r = − 0.028, p = 0.002). We did not find

elationships with age or IQ, and we did not find significant relationships

ith the other movie data ( The Present ). 

The finding that two of the whole-brain secondary measures of stabil-

ty and similarity correlated with SRS scores meshes with the central role

hat social cognition plays in the developing brain. We had hypothesized

hat stability and similarity might relate to chronological development,

n accordance with the overarching idea that as FC relationships become

ore efficient and mature, they become more stable within a person and

ore reflective of patterns that are shared across people. With regards to

ocial skills, marked improvement in social cognitive skills during child-

ood and adolescence is generally considered to be the dominant devel-

pmental focus of this highly dynamic age range ( Blakemore, 2008 ).

he brain regions implicated in “the social brain ” are among the most

ensely connected in the cortex ( McCormick et al., 2018 ; Oldham and

ornito, 2019 ; Saxe et al., 2009 ), and previous studies have shown that

ignificant changes in FC organization of these regions occur during de-

elopment ( Richardson et al., 2018 ). Recently, Lake et al. used Connec-

ome Predictive Modeling to identify a complex set of FC edges that

redicted SRS scores in a large sample of children and adolescents with

nd without autism spectrum disorder ( Lake et al., 2019 ). The SRS net-

ork identified by the machine-learning algorithm was predictive of

RS scores of unseen participants, even when those participants were

rom a separate study and had attention-deficit hyperactivity disorder.

hese transdiagnostic results indicate a surprisingly tight coupling be-

ween intrinsic functional connectivity and social skills. Our findings

ere support the idea that SRS scores relate closely to large-scale func-

ional connectivity relationships in the developing brain, both during

est and movie-watching conditions. 

One complication of the brain-behavior correlations we identified is

hat, contrary to our hypothesis, stability and similarity were not corre-

ated with age. Moreover, none of the behavioral measures tested were

orrelated with age, and the only robust relationship observed with age

as head motion. The brain-behavior correlation analyses were con-

ucted with only 119 participants, and given the clinical heterogeneity

f the sample, it is possible that age-relationships would emerge with a

arger sample. It is also possible that because the sample is psychiatri-

ally enriched, differences in neurological maturation may have made

hronological age less meaningful as a developmental marker. That is

dmittedly a controversial suggestion, but it implies that measures such

s SRS might be more developmentally meaningful than age. Other pos-

ible contributing limitations that we cannot exclude include scan dura-

ion, movie choice, choice of motion criteria, the lack of two runs of the

ame movie, and possibly the lack of global signal regression ( Li et al.,

019 ). Either way, further studies with larger samples are needed to
est the brain-behavior relationship we observed. We also note that sim-

larity itself depends on the group mean, and therefore replication in a

ifferent sample is perhaps even more important than usual. 

We also note that the between-subject similarity during movies were

orrelated with SRS scores only during one of the movies. We note dif-

erences with the stimuli as possible explanations for this finding. As

bove, The Present came last in the scanning session, and there are also

elevant differences between the movies themselves. For example, Despi-

able Me is a social, highly verbal movie that features children of differ-

nt ages and sexes. The Present is largely nonverbal and features a single

oung adolescent male. Despicable Me may have been more engaging

nd more likely to drive the “whole-brain ” overall, and this combined

ith the order effect of MovieTP, may have made the FC data derived

rom Despicable Me more meaningful. A more sobering possibility is

hat the SRS relationship might stem from some idiosyncratic, stimulus-

pecific aspect of MovieDM ( Westfall et al., 2017 ), though this concern

ould not apply to the cross-rest stability correlation. Overall, these

ndings suggest that the developmental changes in neural circuitry that

roduce cross-rest stability and between-subject similarity of the func-

ional connectome may also be relevant for supporting the development

f social skills, arguably the most complex processing which the brain

erforms. 

onclusions 

Based on the fingerprinting findings here, and on the subsequent

nalyses using whole-brain measures of stability and similarity, we sug-

est that the developmental reorganization of the functional connec-

ome during childhood and adolescence is accomplishing congruent

rajectories, meaning it is becoming both more stable within-subjects

across resting state runs and across states or conditions) and more

imilar between-subjects in a potentially interrelated way. Moreover,

t seems that a connectome that is both stable and similar also contains

ndividually distinct patterns of FC —perhaps as a byproduct of attaining

he rich neural variability that maximizes efficiency within an individ-

al’s brain. The strongest finding in these data was that the stability of

he connectome across resting state runs relates to a measure of social

kills, and we speculate that the same processes that support the stabi-

ization of the connectome also support social cognitive development.

evertheless, significant caveats attend these findings. Particularly be-

ause this sample was both developmental and psychiatrically enriched,

nd because these findings did not relate to age, further investigation is

eeded. These data also underscore the importance of both the parcella-

ion resolution and the number of volumes used in each matrix in finger-

rinting algorithms and highlight the need for large-scale datasets with

ultiple, long movie runs. Ideally, longitudinal data would be used to

haracterize the trajectory of connectome stability both across rest runs

nd across different states —and to track how stability relates to both

onnectome similarity and behavioral measures of development —over

ime. 
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upplementary materials 

Supplementary Fig. 1s: Demographics for behavioral subsam-

le, n = 119. The age distribution, the right-skew of CBCL T-scores (in

hich greater scores indicate greater overall behavioral problems and

sychopathology), and the association between advancing age and de-

reasing head motion (A, B and E) are similar to the full 210 sample

hown in Figure 1. C and D show the distribution of the other behav-

oral measures of interest, IQ and SRS. F shows that there are no signif-

cant correlations among the three behavioral measures and either age

r mean framewise displacement. 

Supplementary Fig. 2s: Secondary test-retest matching algo-

ithm analyses. To further interrogate the results of the main matching

lgorithm reported in Figure 2, we conducted a number of other finger-

rinting algorithms. A) Here we show the results of running the algo-

ithm with permutations using falsely assigned identity pairs. B) The

ain analyses used matrices truncated at 250 volumes. Here, we reran

he algorithm using all available volumes, so 750 volumes for MovieDM,

nd 375 volumes for Rest1 and Rest2. We also created an additional set

f matrices, Rest1 + 2 (750 volumes), by concatenating across the two

est runs. The arrows indicate whether the values shown here are in-

reased or decreased relative to the original analysis using thresholds set

ia permutation testing ( p < 0.05). C) There was a significant difference

n mean framewise displacement across conditions, so here we reran the

lgorithm using a subset of subjects such that there was no difference

n motion across conditions. All accuracies here are slightly higher than

he original values. D) Here we reran the algorithm using only motion

arameters. The graphs in E) show the effects of adding volumes to one

atrix while holding the number of volumes in the other matrix con-

tant. Contrary to expectations, adding data does not result in a linear

ncrease in accuracy in all cases. 

Supplementary Fig. 3s: Identification algorithms using single-

ex cohorts. Female- and male-only cohorts were identified that had

o significant difference in mean age or mean FD, and the identifica-

ion algorithms were rerun. Because sample size is a major determinant

f accuracy, a mixed-sex cohort was also created to provide a compar-

son using the same sample size. All matrices show the same general

attern as observed in the full cohort ( N = 210) (Figure 2). We con-

ucted permutation testing to assess whether cross-cohort differences

ere significant, and none met the permutation-based thresholds for

ignificance ( p < 0.05). Neither cohort outperforms the others, and the

verall increases in matching relative to the N = 210 matrix are at-

ributed to sample size. In this psychiatrically enriched, developmental

ohort, using data from both sexes does not appear to have a major effect

n matching accuracies of the test-retest identification algorithm. 

Supplementary Fig. 4s: All pairwise correlations among the six

easures of connectome stability and similarity. Main results for

he stability/similarity relationships are shown in Figure 4, with head

otion as a covariate. Here, we provide numerical values for all pair-

ise correlations of the six measures of stability and similarity (without

ovariates). Asterisks indicate statistical significance (Bonferroni cor-

ected, p < 0.003). Relationships of the six measures with framewise dis-

lacement (FD) and age are shown in B. 

Supplementary Fig. 5s: Brain measures and age. Neither the sim-

larity and stability measures ( N = 210), nor the components from the

CA of the stability and similarity measures ( n = 119), show a clear rela-

ionship with age. When testing for a linear best fit, the only potentially

ignificant correlation was between age and Component 2 ( r = 0.20,

 = 0.031). When testing for a quadratic best fit, the only poten-

ially significant correlation was also between age and Component 2

F(2116) = 3.54, r2 = 0.06, p = 0.032). 

upplementary materials 

Supplementary material associated with this article can be found, in

he online version, at doi:10.1016/j.neuroimage.2020.117537 . 
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